

Single lens dual-aperture 3D imaging and the color remapping

Sam Y. Bae^{1,2}, Ronald Korniski¹, Allen Ream³, Eric Fritz⁴, Michael Shearn¹

¹Jet Propulsion Laboratory, California Institute of Technology ²University of California at Los Angeles, Los Angeles, California ³Montana State University, Bozeman, Montana ⁴University of Nebraska, Lincoln, Nebraska

23 January 2012

Outline

- Advantages in single lens dual-aperture 3D imaging
- Switching viewpoints through complementary bandpass Filters
- Problems in color mismatching
- Mitigation through color remapping
- 3-mm lens dual-aperture 3D camera

Motivation

	Open Surgery	Minimally Invasive Surgery
Surgical Opening	<u>Large</u> – Segment of skull	Small – Keyhole opening (endoscope <u>4 mm</u> O.D.)
Patient recovery	<u>Lengthy</u> – weeks	Short – a few days
Visual feedbacks	Strong – Full binocular vision, auditory, and haptic sensory	Weak – Dependence on 2D endoscope and remote tools with limited feedback

Objectives

- Build a 3D camera that:
 - Provides high definition, real-time, binocular (left- and right-viewpoint), images
 - Has dimensions no bigger than 4-mm in diameter.
- Examples close to the dimensions:
 - Distal camera borescopes and endoscopes

Comparisons

Two-camera 3D	Dual-aperture 3D
Two sets of objective lenses	Single objective lens (Simpler fabrication)
Two focal planes	One focal plane (High definition at the FPA)
Parallel viewpoints	Natural vergence

Past work to open half-apertu

Mechanisms	Pros	Cons	
Mechanical shutter	Complete open/block	Bulk, not instantaneous	
Liquid crystal block	Fast switching	Incomplete open/block	
Orthogonal polarizer pair	Passive	Light randomization	
Complementary filter pair	Passive	Monochromatic images	

- Some of these require an extra space for the installation
- Some still have a problem with crosstalk between two channels

Complementary Multiband Bandpass Fifters

Past work	Proposed work
Single band bandpass filters	Multi-band bandpass filters
2 spectral light source	6 spectral light sources
Single band spectral imge	RGB color expression

Problems

- Color rivalry (1-3)
 - Def.: two different colors competing in our brain when each presented to the eye.
 - The missing spectral bands creates the color difference between the two binocular images

Mitigations

- Use bandpass containing more passbands
- Remap the colors, using Image processing

Spectral transmission of the dual-band bandbass filters under Xe lamp

After remapping to look without the fifte

Without the filters, under Xe lamp

Remapped to look under daylight

Simulated image under daylight

Remapped blue biased image

Remapped red biased image

Dual-band results

	ΔE Lab raw	ΔE remap to D65	ΔE remap to Xe
Color diff.	46±25	25±14	23±14

Simulation results

Complementary filter pairs	ΔE raw	ΔE of remapped values
Dual-band	82	48
Triple-band	163	43
Quadruple-band	57	19

More the passbands that each filter has, smaller the color difference between the two channels

First generation CMBF 3D system

25-mm lens monochromatic camera, half-moon shape CMBFs, 6 multispectral images combined to produce a 3D

Half-moon shape CMBF

Lens system, two achromats + CMBF

A ring light connected to a tunable filter

Overall system

Current prototype

3-mm lens color camera, 9.35-mm overall Dia., custom fabricated CMBF, 2 multispectral images combined to produce 3D

Summary

- The dual-aperture has advantage in providing natural vergence and miniaturization
- Complementary bandpass filters (CBF) were used for opening the dual-aperture alternately
- The CBF results in producing unwanted color rivalry
- This was mitigated through using a simple remapping
- The dual-aperture concept was applied to building a 3D camera with 3-mm lens elements along with the remapping

Acknowledgement

- I'd like to thank Dr. Shahinian and Skull Base Institute for sponsoring the project.
- I'd like to thank my supervisor Harish Manohara for his advice and administration.
- I'd like to thank Professor Harold Monbouquette for his guidance in my PhD pursuit with this project

Dual-aperture Concept

 Disparity created by apertures offset from the optical axis:

$$\frac{1}{d} = \frac{h}{v} \left(\frac{1}{F} - \frac{1}{D} \right) + \frac{1}{D}^*$$

Where F & D and d & g are pairs of conjugate planes

 Needs a mechanism to open/close half-apertures

^{*}Adelson EH and Wang JYA, 1992 18

Past work using the color filters

- Amari used Red/green dual aperture and white light to estimate depths (1)
- Koh used Red/blue dual aperture and white light (2)
- Chen used RGB tri-aperture and white light (3)
- Bando used RGB tri-aperture and white light (4)

A pair of complementary single-band bandpass filters placed to create two optical paths

R, G, B bandpass filters placed to create three different optical paths

Dual-aperture 3D camera

Open halves of the aperture one at a time

- Two viewpoints are created in a single objective lens camera
 - Uses a single image plane. High definition.
 - Built-in vergence when focused. Natural binocular vision.

	ΔE Lab raw	ΔE remap to D65	ΔE remap to Xe
Xe and D65	37±14	23±9	
Blue and Dest.	29±12	20±8	18±11
Red and Dest.	53±18	24±14	25±13
Color diff.	46±25	25±14	23±14